Full-scale highly-loaded wastewater treatment processes (a-stage) to increase energy production from wastewater, performance and design guidelines
Details
Industrie, Afvalwater & Hergebruik
Artikelen
“Current practice of wastewater treatment does not recover the full potential of energy present in wastewater. The potential of using anammox bacteria for autotrophic nitrogen removal combined with a desire for energy optimization brings new attention to the A-stage technology for organic carbon harvesting from municipal wastewater. The goal of this research was to investigate operational conditions of four full-scale A-stage processes and gain insight in the optimal conditions to harvest the maximum amount of organics present in sewage as excess sludge from the A stage. Large differences in removal efficiencies and design aspects were found between the four operational A-stage processes in the Netherlands. Biochemical oxygen demand (BOD) removal efficiencies vary between 40% and 80%, indicating that a good removal efficiency is possible, but that local conditions or design can be very influential. An optimal solid retention time (SRT) for maximal sludge production of 0.3 days was found; a longer SRT resulted in more mineralization of the chemical oxygen demand (COD). SRT control might be an important design aspect for the optimization of A-stage process. A short contact time with a minimum of 15 min and sufficient aeration were found to be optimal for soluble COD removal. Iron addition aided the removal of colloidal/suspended COD by coagulation/flocculation. Sludge flocs formed in the A-stage process are weak and sensitive to anaerobic conditions as well as shear due to, for example, pumping. Besides a good design of the A-stage itself, the further processing of the produced sludge also needs careful attention to optimize the sludge production and energy production.”
(Citaat: de Graaff, M.S., Brand, T.P.H. van den, et al. Full-scall highly-loaded wastewater treatment processes (A-stage) to increase energy production from wastewater – Environmental Engineering Science 33(2016)8, p.571-577)